A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm

Authors

Abstract:

This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs, and most classical optimization methods are focused on parallel-machine scheduling problems without considering setup times and relationship between jobs. This problem is shown to be NP-hard one in the strong sense. Obtaining an optimal solution for this type of complex, large-sized problems in reasonable computational time is extremely difficult. A meta-heuristic method, based on genetic algorithms, is thus proposed and applied to the given problem in order to obtain a good and near-optimal solution, especially for large sizes. Further, the efficiency of the proposed algorithm, based on various test problems, is compared with the Lingo 8.0 software.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

full text

fuzzy programming for parallel machines scheduling: minimizing weighted tardiness/earliness and flow time through genetic algorithm

appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. one type of scheduling problems is just-in-time (jit) scheduling and in this area, motivated by jit manufacturing, this study investigates a mathematical model for...

full text

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

full text

An Iterated Greedy Algorithm for Flexible Flow Lines with Sequence Dependent Setup Times to Minimize Total Weighted Completion Time

This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other exist...

full text

An Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes

This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...

full text

A Novel B and B Algorithm for a Unrelated Parallel Machine Scheduling Problem to Minimize the Total Weighted Tardiness

This paper presents a scheduling problem with unrelated parallel machines and sequencedependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance properties. The lower and upper bounds are derived through an assignment problem and the composite dispatching rule ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 2

pages  183- 194

publication date 2007-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023